Premium
Critical Impact of Hole Transporting Layers and Back Electrode on the Stability of Flexible Organic Photovoltaic Module
Author(s) -
Son Hyoung Jin,
Kim Sung Hyun,
Kim Dong Hwan
Publication year - 2017
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201601289
Subject(s) - materials science , pedot:pss , organic solar cell , indium tin oxide , electrode , photoactive layer , layer (electronics) , polymer solar cell , optoelectronics , active layer , heterojunction , chemical engineering , indium , degradation (telecommunications) , solar cell , nanotechnology , composite material , polymer , thin film transistor , electronic engineering , chemistry , engineering
Properties of hole transporting layers (HTLs) and back electrode are very critical to the stability of inverted bulk heterojunction organic photovoltaic (OPV) modules. Here, various deposition methods for back electrodes and materials of HTLs are examined by applying to inverted organic solar cells with a structure of indium tin oxide/ZnO/photoactive layer/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Ag. The experiment is performed on encapsulated modules with flexible barrier films under accelerated conditions. The OPV modules with screen‐printed Ag electrodes are shown to be electrically unstable with a reduction of the current density under damp heat condition at 85 °C/85% RH. Optical images for the active layer/PEDOT:PSS interface reveal that a reaction between the solvent from the Ag electrode and the underlying layers is the major cause for the degradation. In comparison with materials of the HTLs, the PEDOT:PSS layer shows low stability compared to the MoO 3 layer under the accelerated conditions. Unusual chemical changes in the PEDOT:PSS film are observed through X‐ray photoelectron spectroscopy and this is further addressed by correlating the stability of the OPV devices.