Premium
Metal‐Organic Framework‐Based Nanomaterials for Electrocatalysis
Author(s) -
Mahmood Asif,
Guo Wenhan,
Tabassum Hassina,
Zou Ruqiang
Publication year - 2016
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201600423
Subject(s) - electrocatalyst , materials science , phosphide , metal organic framework , nanotechnology , nanomaterials , carbide , oxide , carbon fibers , electrochemistry , metal , chemistry , composite number , metallurgy , electrode , organic chemistry , adsorption , composite material
Metal‐organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, there has been increasing interest in deriving advanced materials from MOFs for electrochemical energy storage and conversion. This progress report highlights recent breakthroughs in electrocatalysis by using MOF‐based novel catalysts, such as in oxygen reduction and evolution, hydrogen evolution and carbon dioxide reduction. The advantages of preparing electrocatalysts from MOFs are introduced and discussed. Then, the development of MOF derived electrocatalysis‐active products, such as heteroatom‐doped carbon, metal oxide (MO), metal sulfide (MS), metal carbide (MC), metal phosphide (MP) and their hybrids with carbon, are summarized. The detailed functions of these materials in representative electrocatalysis systems are also reviewed. The demonstrated examples will provide understanding in preparing highly active and stable electrocatalysts. The progress report concludes with the future applications of MOF‐based materials in the field of electrocatalysis.