Premium
Sodium‐Ion Batteries: Novel K 3 V 2 (PO 4 ) 3 /C Bundled Nanowires as Superior Sodium‐Ion Battery Electrode with Ultrahigh Cycling Stability (Adv. Energy Mater. 17/2015)
Author(s) -
Wang Xuanpeng,
Niu Chaojiang,
Meng Jiashen,
Hu Ping,
Xu Xiaoming,
Wei Xiujuan,
Zhou Liang,
Zhao Kangning,
Luo Wen,
Yan Mengyu,
Mai Liqiang
Publication year - 2015
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201570091
Subject(s) - materials science , nanowire , nanoporous , ion , electrode , cathode , battery (electricity) , nanotechnology , chemical engineering , sodium , carbon fibers , energy storage , coating , sodium ion battery , fabrication , electrochemistry , composite material , faraday efficiency , organic chemistry , power (physics) , chemistry , physics , quantum mechanics , engineering , metallurgy , medicine , alternative medicine , pathology , composite number
In article number 1500716, Liang Zhou, Liqiang Mai, and co‐workers report the fabrication of K 3 V 2 (PO 4 ) 3 /C bundled nanowires using a facile organic‐acid‐assisted method. The organic acid acts as a carbon precursor and as a directing agent, promoting the formation of K 3 V 2 (PO 4 ) 3 /C bundled nanowires. With a highly stable framework, nanoporous structure, and conductive carbon coating, K 3 V 2 (PO 4 ) 3 /C bundled nanowires exhibit fast ion diffusion and excellent electron conduction when used as a cathode material for sodium‐ion batteries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom