Premium
Low‐Temperature‐Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p–n Heterojunction
Author(s) -
Azmi Randi,
Aqoma Havid,
Hadmojo Wisnu Tantyo,
Yun JinMun,
Yoon Soyeon,
Kim Kyungkon,
Do Young Rag,
Oh SeungHwan,
Jang SungYeon
Publication year - 2016
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201502146
Subject(s) - heterojunction , materials science , passivation , quantum dot , optoelectronics , solution process , energy conversion efficiency , photovoltaic system , semiconductor , nanotechnology , layer (electronics) , ecology , biology
Low‐temperature solution‐processed high‐efficiency colloidal quantum dot (CQD) photovoltaic devices are developed by improving the interfacial properties of p–n heterojunctions. A unique conjugated polyelectrolyte, WPF‐6‐oxy‐F, is used as an interface modification layer for ZnO/PbS‐CQD heterojunctions. With the insertion of this interlayer, the device performance is dramatically improved. The origins of this improvement are determined and it is found that the multifunctionality of the WPF‐6‐oxy‐F interlayer offers the following essential benefits for the improved CQD/ZnO junctions: (i) the dipole induced by the ionic substituents enhances the quasi‐Fermi level separation at the heterojunction through favorable energy band‐bending, (ii) the ethylene oxide groups containing side chains can effectively passivate the interfacial defect sites of the heterojunction, and (iii) these effects occur without deterioration in the intrinsic depletion region or the series resistance of the device. All of the figures‐of‐merit of the devices are improved as a result of the enhanced built‐in potential (electric field) and the reduced interfacial charge recombination at the heterojunction. The benefits due to the WPF‐6‐oxy‐F interlayer are generally applicable to various types of PbS/ZnO heterojunctions. Finally, CQD photovoltaic devices with a power conversion efficiency of 9% are achievable, even by a solution process at room temperature in an air atmosphere. The work suggests a useful strategy to improve the interfacial properties of p–n heterojunctions by using polymeric interlayers.