Premium
Solid‐State Solar Thermal Fuels for Heat Release Applications
Author(s) -
Zhitomirsky David,
Cho Eugene,
Grossman Jeffrey C.
Publication year - 2016
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201502006
Subject(s) - materials science , thermal energy storage , solid state , solar energy , energy storage , polymer , thermal , chemical engineering , thermal energy , chemical energy , nanotechnology , engineering physics , composite material , thermodynamics , electrical engineering , physics , power (physics) , engineering
Closed cycle systems offer an opportunity for solar energy harvesting and storage all within the same material. Photon energy is stored within the chemical conformations of molecules and is retrieved by a triggered release in the form of heat. Until now, such solar thermal fuels (STFs) have been largely unavailable in the solid‐state, which would enable them to be utilized for a multitude of applications. A polymer STF storage platform is synthesized employing STFs in the solid‐state. This approach enables uniform films capable of appreciable heat storage of up to 30 Wh kg −1 and that can withstand temperature of up to 180 °C. For the first time a macroscopic energy release is demonstrated using spatial infrared heat maps with up to a 10 °C temperature change. These findings pave the way for developing highly efficient and high energy density STFs for applications in the solid‐state.