Premium
3D‐Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research
Author(s) -
Bai Zhiming,
Yan Xiaoqin,
Li Yong,
Kang Zhuo,
Cao Shiyao,
Zhang Yue
Publication year - 2016
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201501459
Subject(s) - materials science , cadmium sulfide , semiconductor , water splitting , nanowire , photocatalysis , nanotechnology , nanoparticle , visible spectrum , band gap , optoelectronics , chemical engineering , catalysis , biochemistry , chemistry , engineering , metallurgy
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO 2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting.