z-logo
Premium
Morphology‐Limited Free Carrier Generation in Donor/Acceptor Polymer Blend Solar Cells Composed of Poly(3‐hexylthiophene) and Fluorene‐Based Copolymer
Author(s) -
Mori Daisuke,
Benten Hiroaki,
Ohkita Hideo,
Ito Shinzaburo
Publication year - 2015
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201500304
Subject(s) - materials science , polymer , polymer solar cell , charge carrier , acceptor , amorphous solid , electron acceptor , polymer blend , copolymer , organic solar cell , chemical engineering , polymer chemistry , photochemistry , optoelectronics , crystallography , chemistry , composite material , physics , engineering , condensed matter physics
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐ alt ‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here