z-logo
Premium
Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design
Author(s) -
Haber Joel A.,
Anzenburg Eitan,
Yano Junko,
Kisielowski Christian,
Gregoire John M.
Publication year - 2015
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201402307
Subject(s) - materials science , electrocatalyst , crystallite , oxide , nanostructure , oxygen evolution , chemical engineering , high resolution transmission electron microscopy , amorphous solid , transition metal , electrochemistry , nanotechnology , transmission electron microscopy , catalysis , crystallography , chemistry , electrode , metallurgy , engineering , biochemistry
Ce‐rich mixed metal oxides comprise a recently discovered class of ­electrocatalysts for the oxygen evolution reaction (OER). In particular, at current densities below 10 mA cm −2 , Ni 0.3 Fe 0.07 Co 0.2 Ce 0.43 O x exhibits ­superior activity compared to the corresponding transition metal oxides, despite the relative inactivity of ceria. To elucidate the enhanced activity and underlying catalytic mechanism, detailed structural characterization of this quinary oxide electrocatalyst is reported. Transmission electron microscopy imaging of cross‐section films as‐prepared and after electrochemical testing reveals a stable two‐phase nanostructure composed of 3–5 nm diameter crystallites of fluorite CeO 2 intimately mixed with 3–5 nm crystallites of transition metal oxides alloyed in the rock salt NiO structure. Dosing experiments demonstrate that an electron flux greater than ≈1000 e Å −2 s −1 causes the inherently crystalline material to become amorphous. A very low dose rate of 130 e Å −2 s −1 is employed for atomic resolution imaging using inline holography techniques to reveal a nanostructure in which the transition metal oxide nanocrystals form atomically sharp boundaries with the ceria nanocrystals, and these results are corroborated with extensive synchrotron X‐ray absorption spectroscopy measurements. Ceria is a well‐studied cocatalyst for other heterogeneous and electrochemical reactions, and our discovery introduces biphasic cocatalysis as a design concept for improved OER electrocatalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here