Premium
Superior Lithium Storage Properties of β‐FeOOH
Author(s) -
Yu Linghui,
Xi Shibo,
Wei Chao,
Zhang Wenyu,
Du Yonghua,
Yan Qingyu,
Xu Zhichuan
Publication year - 2015
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201401517
Subject(s) - materials science , lithium (medication) , intercalation (chemistry) , anode , electrolyte , electrochemistry , chemical engineering , electrode , energy storage , capacity loss , absorption (acoustics) , inorganic chemistry , composite material , chemistry , medicine , power (physics) , physics , quantum mechanics , engineering , endocrinology
Several crystal forms of FeOOH are recently reported to be highly promising for lithium storage due to their high capacity, low cost, and environmental friendliness. In particular, β‐FeOOH has shown a capacity of ≈1000 mAh g −1 , which is comparable to other promising iron‐based anodes, such as Fe 2 O 3 and Fe 3 O 4. However, its storage mechanisms are unclear and the potential for further improvement remains unexplored. Here, it is shown that this material can have a very high reversible capacity of ≈1400 mAh g −1 , which is 20%–40% higher than Fe 2 O 3 and Fe 3 O 4 . Such a high capacity is delivered from a series of reactions including intercalation and conversion reactions, formation/deformation of solid‐state electrolyte interface layers and interfacial storage. The mechanisms are studied by a combination of electrochemical and X‐ray absorption near edge spectroscopic approaches. Moreover, very long cycling performance, that is, after even more than 3000 cycles the material still has a significant capacity of more than 800 mAh g −1 , is obtained by a simple electrode design involving introducing a rigid support into porous electrodes. Such long cycling performance is for the first time achieved for high‐capacity materials based on conversion reactions.