Premium
Inverted Tandem Polymer Solar Cells with Polyethylenimine‐Modified MoO X /Al 2 O 3 :ZnO Nanolaminate as the Charge Recombination Layers
Author(s) -
Shim Jae Won,
FuentesHernandez Canek,
Zhou Yinhua,
Dindar Amir,
Khan Talha M.,
Giordano Anthony J.,
Cheun Hyeunseok,
Yun Minseong,
Marder Seth R.,
Kippelen Bernard
Publication year - 2014
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201400048
Subject(s) - materials science , tandem , polymer solar cell , bilayer , energy conversion efficiency , work function , photoactive layer , short circuit , polymer , optoelectronics , layer (electronics) , analytical chemistry (journal) , nanotechnology , voltage , composite material , organic chemistry , chemistry , membrane , biochemistry , physics , quantum mechanics
A new charge recombination layer for inverted tandem polymer solar cells is reported. A bilayer of MoO X /Al 2 O 3 :ZnO nanolaminate is shown to enable efficient charge recombination in inverted tandem cells. A polymer surface modification on the MoO X /Al 2 O 3 :ZnO nanolaminate bilayer increases the work function contrast between the two outward surfaces of the charge recombination layer, further improving the performance of tandem solar cells. An analysis of the electrical, optical, and surface properties of the charge recombination layer is presented. Inverted tandem polymer solar cells, with two photoactive layers comprising poly (3‐hexylthiophene) (P3HT):indene‐C 60 bisadduct (IC 60 BA) for the bottom cell and poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene))‐2,6‐diyl] (PBDTTT‐C):[6,6]‐phenyl C 61 butyric acid methyl ester (PC 60 BM) for the top cell, yield an open‐circuit voltage of 1481 mV ± 15 mV, a short‐circuit current density of 7.1 mA cm −2 ± 0.1 mA cm −2 , and a fill factor of 0.62 ± 0.01, resulting in a power conversion efficiency of 6.5% ± 0.1% under simulated AM 1.5G, 100 mW cm −2 illumination.