Premium
High‐Performance Semitransparent Tandem Solar Cell of 8.02% Conversion Efficiency with Solution‐Processed Graphene Mesh and Laminated Ag Nanowire Top Electrodes
Author(s) -
Yusoff Abd. Rashid bin Mohd,
Lee Seung Joo,
Shneider Fabio Kurt,
da Silva Wilson Jose,
Jang Jin
Publication year - 2014
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201301989
Subject(s) - materials science , graphene , tandem , indium tin oxide , electrode , anode , energy conversion efficiency , optoelectronics , cathode , nanowire , solar cell , nanotechnology , composite material , layer (electronics) , chemistry
A high‐performance semitransparent tandem solar cell that uses solution‐processed graphene mesh and laminated Ag NW as a transparent anode and cathode, respectively, is demonstrated. The laminated top electrode can be deposited without causing any damage to the underneath organic solar cells. Power conversion efficiencies of 8.02% and 6.47% are obtained when the light is projected from the solution‐processed graphene mesh and laminated AgNW, respectively. The performance of the tandem cell is found to be comparable to a tandem solar cell fabricated using commercially available indium tin oxide. These findings offer a high‐performance device and open a new pathway in searching for a potential replacement to the frequently used transparent conducting electrodes.