Premium
8.9% Single‐Stack Inverted Polymer Solar Cells with Electron‐Rich Polymer Nanolayer‐Modified Inorganic Electron‐Collecting Buffer Layers
Author(s) -
Woo Sungho,
Hyun Kim Wook,
Kim Hwajeong,
Yi Yeonjin,
Lyu HongKun,
Kim Youngkyoo
Publication year - 2014
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201301692
Subject(s) - materials science , polymer solar cell , x ray photoelectron spectroscopy , energy conversion efficiency , ultraviolet photoelectron spectroscopy , polymer , chemical engineering , hybrid solar cell , optoelectronics , analytical chemistry (journal) , composite material , organic chemistry , chemistry , engineering
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C 71 ‐butyric acid methyl ester (PC 71 BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.