Premium
Ultrahigh‐Energy‐Density Lithium‐Ion Batteries Based on a High‐Capacity Anode and a High‐Voltage Cathode with an Electroconductive Nanoparticle Shell
Author(s) -
Lee JungIn,
Lee EunHo,
Park JangHoon,
Park Soojin,
Lee SangYoung
Publication year - 2014
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201301542
Subject(s) - materials science , anode , cathode , nanoparticle , electrode , electrolyte , high voltage , lithium (medication) , nanotechnology , lithium cobalt oxide , chemical engineering , optoelectronics , lithium ion battery , voltage , battery (electricity) , electrical engineering , medicine , power (physics) , chemistry , physics , endocrinology , quantum mechanics , engineering
The combination of high‐capacity anodes and high‐voltage cathodes has garnered a great deal of attention in the pursuit of high‐energy‐density lithium‐ion batteries. As a facile and scalable electrode‐architecture strategy to achieve this goal, a direct one‐pot decoration of high‐capacity silicon (Si) anode materials and of high‐voltage LiCoO 2 (LCO) cathode materials is demonstrated with colloidal nanoparticles composed of electroconductive antimony‐doped tin oxide (ATO). The unusual ATO nanoparticle shells enhance electronic conduction in the LCO and Si electrode materials and mitigate unwanted interfacial side reactions between the electrode materials and liquid electrolytes. The ATO‐coated LCO materials (ATO‐LCO) enable the construction of a high‐mass‐loading cathode and suppress the dissolution of cobalt and the generation of by‐products during high‐voltage cycling. In addition, the ATO‐coated Si (ATO‐Si) anodes exhibit highly stable capacity retention upon cycling. Integration of the high‐voltage ATO‐LCO cathode and high‐capacity ATO‐Si anode into a full cell configuration brings unprecedented improvements in the volumetric energy density and in the cycling performance compared to a commercialized cell system composed of LCO/graphite.