Premium
Resonant Tunneling and Negative Differential Resistance in Black Phosphorus Vertical Heterostructures
Author(s) -
Xu Kai,
Wynne Eric,
Zhu Wenjuan
Publication year - 2020
Publication title -
advanced electronic materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.25
H-Index - 56
ISSN - 2199-160X
DOI - 10.1002/aelm.202000318
Subject(s) - quantum tunnelling , materials science , optoelectronics , terahertz radiation , diode , black phosphorus , tunnel diode , resonant tunneling diode , phosphorene , heterojunction , quantum well , band gap , physics , optics , laser
Resonant tunneling diodes with negative differential resistance (NDR) have attracted significant attention due to their unique quantum resonant tunneling phenomena and potential applications in terahertz emission/detection and high‐density logic/memory. In this paper, resonant tunneling devices, where the carriers tunnel through a hexagonal boron nitride (hBN) barrier sandwiched by two black phosphorus (BP) layers, are explored. The resonance occurs when the energy bands of the two black phosphorus layers are aligned. The conductive atomic force microscopy (CAFM) measurements reveal prominent NDR peaks with large peak‐to‐valley ratios at room temperature. It is found that the positions of the NDR peaks are very sensitive to the amplitude and the shape of the voltage waveform used in CAFM, which can be explained by the charge trapping effect. Furthermore, resonant tunneling transistors are demonstrated based on BP/hBN/BP stacks in which the locations of the NDR peaks are tunable by the electrostatic gating. As compared to the traditional tunneling diodes based on bulk materials, the tunneling devices based on thin boron nitride tunneling barrier and high mobility black phosphorus offer ultra‐high‐speed response. This feature, together with the NDR characteristics, provides the potential for applications in THz oscillators and multi‐value logic devices.