Premium
Energy‐Efficient Hybrid Perovskite Memristors and Synaptic Devices
Author(s) -
Xiao Zhengguo,
Huang Jinsong
Publication year - 2016
Publication title -
advanced electronic materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.25
H-Index - 56
ISSN - 2199-160X
DOI - 10.1002/aelm.201600100
Subject(s) - neuromorphic engineering , memristor , materials science , energy consumption , computer science , perovskite (structure) , spike timing dependent plasticity , synaptic plasticity , neuroscience , artificial neural network , artificial intelligence , electronic engineering , electrical engineering , chemistry , engineering , biology , biochemistry , receptor , crystallography
New parallel computing architectures based on neuromorphic computing are needed due to their advantages over conventional computation with regards to real‐time processing of unstructured sensory data such as image, video, or voice. However, developing artificial neuromorphic system remains a challenge due to the lack of electronic synaptic devices, which can mimic all the functions of biological synapses with low energy consumption. Here it is reported that two‐terminal organometal trihalide perovskite (OTP) synaptic devices can mimic the neuromorphic learning and remembering process. Various functions known in biological synapses are demonstrated in OTP synaptic devices including four forms of spike‐timing‐dependent plasticity (STDP), spike‐rate‐dependent plasticity (SRDP), short‐term plasticity (STP) and long‐term potentiation (LTP)), and learning‐experience behavior. The excellent photovoltaic property of the OTP devices also enables photo‐read synaptic functions. The perovskite synapse has the potential of low energy consumption of femto‐Joule/(100 nm) 2 per event, which is close to the energy consumption of biological synapses. The demonstration of energy‐efficient OTP synaptic devices opens a new plausible application of OTP materials into neuromorphic devices, which offer the high connectivity and high density required for biomimic computing.