z-logo
open-access-imgOpen Access
Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
Author(s) -
Borrmann Fabian,
Tsuda Takuya,
Guskova Olga,
Kiriy Nataliya,
Hoffmann Cedric,
Neusser David,
Ludwigs Sabine,
Lappan Uwe,
Simon Frank,
Geisler Martin,
Debnath Bipasha,
Krupskaya Yulia,
AlHussein Mahmoud,
Kiriy Anton
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202203530
Subject(s) - doping , materials science , conductivity , polymer , dopant , chemical physics , chemical engineering , chemistry , composite material , optoelectronics , engineering
The understanding and applications of electron‐conducting π ‐conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n‐doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n‐doped backbone. Here, the n‐type conducting NDI polymer with enhanced stability of its n‐doped states for prospective “in‐water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10 −2  S cm −1  under ambient conditions and 10 −1  S cm −1  in vacuum. The modeling explains the stabilizing effects  for various dopants. The simulations show a significant doping‐induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n‐doped states in water and the high electron conductivity of polymers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here