z-logo
open-access-imgOpen Access
Recent Advances in Nonfullerene Acceptor‐Based Layer‐by‐Layer Organic Solar Cells Using a Solution Process
Author(s) -
Jee Min Hun,
Ryu Hwa Sook,
Lee Dongmin,
Lee Wonho,
Woo Han Young
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202201876
Subject(s) - organic solar cell , materials science , acceptor , fullerene , active layer , nanotechnology , ternary operation , layer (electronics) , computer science , chemistry , physics , polymer , organic chemistry , thin film transistor , composite material , programming language , condensed matter physics
Recently, sequential layer‐by‐layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p–i–n vertical phase separation, efficient charge transport/extraction, and potential for lab‐to‐fab large‐scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)‐based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large‐area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here