
Multiomics Analysis Identifies SOCS1 as Restraining T Cell Activation and Preventing Graft‐Versus‐Host Disease
Author(s) -
Guo Huidong,
Li Ruifeng,
Wang Ming,
Hou Yingping,
Liu Shuoshuo,
Peng Ting,
Zhao XiangYu,
Lu Liming,
Han Yali,
Shao Yiming,
Chang YingJun,
Li Cheng,
Huang XiaoJun
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202200978
Subject(s) - suppressor of cytokine signaling 1 , cytokine , immunology , microbiology and biotechnology , signal transduction , cancer research , biology , stat protein , t cell , stat3 , medicine , immune system , suppressor , genetics , cancer
Graft‐versus‐host disease (GVHD) is a major life‐threatening complication of allogeneic hematopoietic stem cell transplantation (allo‐HSCT). Inflammatory signaling pathways promote T‐cell activation and are involved in the pathogenesis of GVHD. Suppressor of cytokine signaling 1 ( SOCS1 ) is a critical negative regulator for several inflammatory cytokines. However, its regulatory role in T‐cell activation and GVHD has not been elucidated. Multiomics analysis of the transcriptome and chromatin structure of granulocyte‐colony‐stimulating‐factor (G‐CSF)‐administered hyporesponsive T cells from healthy donors reveal that G‐CSF upregulates SOCS1 by reorganizing the chromatin structure around the SOCS1 locus. Parallel in vitro and in vivo analyses demonstrate that SOCS1 is critical for restraining T cell activation. Loss of Socs1 in T cells exacerbates GVHD pathogenesis and diminishes the protective role of G‐CSF in GVHD mouse models. Further analysis shows that SOCS1 inhibits T cell activation not only by inhibiting the colony‐stimulating‐factor 3 receptor (CSF3R)/Janus kinase 2 (JAK2 ) /signal transducer and activator of transcription 3 (STAT3 ) pathway, but also by restraining activation of the inflammasome signaling pathway. Moreover, high expression of SOCS1 in T cells from patients correlates with low acute GVHD occurrence after HSCT. Overall, these findings identify that SOCS1 is critical for inhibiting T cell activation and represents a potential target for the attenuation of GVHD.