z-logo
open-access-imgOpen Access
In Situ Monitored (N, O)‐Doping of Flexible Vertical Graphene Films with High‐Flux Plasma Enhanced Chemical Vapor Deposition for Remarkable Metal‐Free Redox Catalysis Essential to Alkaline Zinc–Air Batteries
Author(s) -
Wu Zhiheng,
Yu Yuran,
Zhang Gongkai,
Zhang Yongshang,
Guo Ruxin,
Li Lu,
Zhao Yige,
Wang Zhuo,
Shen Yonglong,
Shao Guosheng
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202200614
Subject(s) - materials science , catalysis , bifunctional , graphene , chemical engineering , chemical vapor deposition , oxygen evolution , electrochemistry , nanotechnology , overpotential , electrode , chemistry , organic chemistry , engineering
Rechargeable zinc–air batteries (ZABs) have attracted great interests for emerging energy applications. Nevertheless, one of the major bottlenecks lies in the fabrication of bifunctional catalysts with high electrochemical activity, high stability, low cost, and free of precious and rare metals. Herein, a high‐performance metal‐free bifunctional catalyst is synthesized in a single step by regulating radicals within the recently invented high‐flux plasma enhanced chemical vapor deposition (HPECVD) system equipped with in situ plasma diagnostics. Thus‐derived (N, O)‐doped vertical few‐layer graphene film (VGNO) is of high areal population with perfect vertical orientation, tunable catalytic states, and configurations, thus enabling significantly enhanced electrochemical kinetic processes of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with reference to milestone achievements to date. Application of such VGNO to aqueous ZABs (A‐ZABs) and flexible solid‐state ZABs (S‐ZABs) exhibited high discharge power density and excellent cycling stability, which remarkably outperformed ZABs using benchmarked precious‐metal based catalysts. The current work provides a solid basis toward developing low‐cost, resource‐sustainable, and eco‐friendly ZABs without using any metals for outstanding OER and ORR catalysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here