
Are Redox‐Active Organic Small Molecules Applicable for High‐Voltage (>4 V) Lithium‐Ion Battery Cathodes?
Author(s) -
Katsuyama Yuto,
Kobayashi Hiroaki,
Iwase Kazuyuki,
Gambe Yoshiyuki,
Honma Itaru
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202200187
Subject(s) - electrochemistry , electrolyte , cathode , lithium (medication) , battery (electricity) , redox , cyclic voltammetry , organic radical battery , chemistry , lithium ion battery , ion , inorganic chemistry , materials science , electrode , organic chemistry , thermodynamics , medicine , power (physics) , physics , endocrinology
While organic batteries have attracted great attention due to their high theoretical capacities, high‐voltage organic active materials (> 4 V vs Li/Li + ) remain unexplored. Here, density functional theory calculations are combined with cyclic voltammetry measurements to investigate the electrochemistry of croconic acid (CA) for use as a lithium‐ion battery cathode material in both dimethyl sulfoxide and γ ‐butyrolactone (GBL) electrolytes. DFT calculations demonstrate that CA dilitium salt (CA–Li 2 ) has two enolate groups that undergo redox reactions above 4.0 V and a material‐level theoretical energy density of 1949 Wh kg –1 for storing four lithium ions in GBL—exceeding the value of both conventional inorganic and known organic cathode materials. Cyclic‐voltammetry measurements reveal a highly reversible redox reaction by the enolate group at ≈4 V in both electrolytes. Battery‐performance tests of CA as lithium‐ion battery cathode in GBL show two discharge voltage plateaus at 3.9 and 3.1 V, and a discharge capacity of 102.2 mAh g –1 with no capacity loss after five cycles. With the higher discharge voltages compared to the known, state‐of‐the‐art organic small molecules, CA promises to be a prime cathode‐material candidate for future high‐energy‐density lithium‐ion organic batteries.