z-logo
open-access-imgOpen Access
Metal‐Coordinated Supramolecular Self‐Assemblies for Cancer Theranostics
Author(s) -
Xu Jiating,
Wang Jun,
Ye Jin,
Jiao Jiao,
Liu Zhiguo,
Zhao Chunjian,
Li Bin,
Fu Yujie
Publication year - 2021
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202101101
Subject(s) - supramolecular chemistry , nanotechnology , materials science , nanomedicine , cancer therapy , cancer , chemistry , molecule , nanoparticle , medicine , organic chemistry
Abstract Metal‐coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal‐coordinated supramolecular self‐assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal‐coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME‐responsive nanomedicines. More importantly, TME‐responsive organic–inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal‐coordinated self‐assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal‐coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal‐coordinated supramolecular self‐assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME‐responsive nanomedicines for in vivo coordinated self‐assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here