z-logo
open-access-imgOpen Access
Fabrication of 3D Ordered Structures with Multiple Materials via Macroscopic Supramolecular Assembly
Author(s) -
Zhang Qian,
Sun Yingzhi,
He Chengzhi,
Shi Feng,
Cheng Mengjiao
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202002025
Subject(s) - fabrication , materials science , nanotechnology , supramolecular chemistry , elastomer , coating , 3d printing , composite material , crystal structure , crystallography , chemistry , medicine , alternative medicine , pathology
Integration of diverse materials into 3D ordered structures is urgently required for advanced manufacture owing to increase in demand for high‐performance products. Most additive manufacturing techniques mainly focus on simply combining different equipment, while interfacial binding of distinctive materials remains a fundamental problem. Increasing studies on macroscopic supramolecular assembly (MSA) have revealed efficient interfacial interactions based on multivalency of supramolecular interactions facilitated by a “flexible spacing coating.” To demonstrate facile fabrication of 3D heterogeneous ordered structures, the combination of MSA and magnetic field‐assisted alignment has been developed as a new methodology for in situ integration of a wide range of materials, including elastomer, resin, plastics, metal, and quartz glass, with modulus ranging from tens of MPa to over 70 GPa. Assembly of single material, coassembly of two to four distinctive materials, and 3D alignment of “bridge‐like” and “cross‐stacked” heterogeneous structures are demonstrated. This methodology has provided a new solution to mild and efficient assembly of multiple materials at the macroscopic scale, which holds promise for advanced fabrication in fields of tissue engineering, electronic devices, and actuators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here