
Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S‐Doped RuP Embedded in N,P,S‐Doped Carbon
Author(s) -
Liu Xiaoyu,
Liu Fan,
Yu Jiayuan,
Xiong Guowei,
Zhao Lili,
Sang Yuanhua,
Zuo Shouwei,
Zhang Jing,
Liu Hong,
Zhou Weijia
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202001526
Subject(s) - redistribution (election) , catalysis , materials science , doping , calcination , hydrogen , chemical engineering , electronegativity , hydrogen production , nanotechnology , chemistry , organic chemistry , optoelectronics , politics , political science , law , engineering
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐ co ‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS 2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.