
Injectable Thermosensitive Hydrogel Containing Erlotinib‐Loaded Hollow Mesoporous Silica Nanoparticles as a Localized Drug Delivery System for NSCLC Therapy
Author(s) -
Zhou Xiaohan,
He Xinlong,
Shi Kun,
Yuan Liping,
Yang Yun,
Liu Qingya,
Ming Yang,
Yi Cheng,
Qian Zhiyong
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202001442
Subject(s) - mesoporous silica , erlotinib , drug delivery , materials science , bioavailability , ethylene glycol , nanoparticle , in vivo , nanotechnology , chemistry , pharmacology , mesoporous material , cancer , medicine , epidermal growth factor receptor , organic chemistry , microbiology and biotechnology , biology , catalysis
Erlotinib (ERT), oral administration agents, is one of the most pivotal targeted drugs in the treatment of non‐small cell lung cancer (NSCLC); however, its poor solubility, low oral bioavailability, and capricious toxicity limit broader clinical applications. In this paper, a novel injectable matrix is prepared based on hollow mesoporous silica nanoparticles (HMSNs) and thermosensitive poly( d , l ‐lactide)‐poly(ethylene glycol)‐poly( d , l ‐lactide) (PDLLA‐PEG‐PDLLA, PLEL) hydrogel to encapsulate and localize the sustained release of ERT for improved efficacy against NSCLC. The test‐tube‐inversion method shows that this ERT‐loaded hydrogel composite (ERT@HMSNs/gel) presents as an injectable flowing solution under room temperature and transfers into a physically crosslinked non‐flowing gel structure at physiological temperature.The ERT@HMSNs/gel composite shows a much longer intratumoral and peritumoral drug retention by in vivo imaging study. Notably, this injectable drug delivery system (DDS) provides an impressive balance between antitumor efficacy and systemic safety in a mice xenograft model. The novel ERT loaded HMSNs/gel system may be a promising candidate for the in situ treatment of NSCLC. Moreover, this study provides a prospective platform for the design and fabrication of a nano‐scaled delivery system for localized anticancer therapies.