z-logo
open-access-imgOpen Access
Flexible Quasi‐van der Waals Ferroelectric Hafnium‐Based Oxide for Integrated High‐Performance Nonvolatile Memory
Author(s) -
Liu Houfang,
Lu Tianqi,
Li Yuxing,
Ju Zhenyi,
Zhao Ruiting,
Li Jingzhou,
Shao Minghao,
Zhang Hainan,
Liang Renrong,
Wang Xiao Renshaw,
Guo Rui,
Chen Jingsheng,
Yang Yi,
Ren TianLing
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202001266
Subject(s) - ferroelectricity , materials science , optoelectronics , non volatile memory , transistor , polarization (electrochemistry) , nanotechnology , voltage , electrical engineering , chemistry , dielectric , engineering
Ferroelectric memories with ultralow‐power‐consumption are attracting a great deal of interest with the ever‐increasing demand for information storage in wearable electronics. However, sufficient scalability, semiconducting compatibility, and robust flexibility of the ferroelectric memories remain great challenges, e.g., owing to Pb‐containing materials, oxide electrode, and limited thermal stability. Here, high‐performance flexible nonvolatile memories based on ferroelectric Hf 0.5 Zr 0.5 O 2 (HZO) via quasi‐van der Waals heteroepitaxy are reported. The flexible ferroelectric HZO exhibits not only high remanent polarization up to 32.6 µC cm −2 without a wake‐up effect during cycling, but also remarkably robust mechanical properties, degradation‐free retention, and endurance performance under a series of bent deformations and cycling tests. Intriguingly, using HZO as a gate, flexible ferroelectric thin‐film transistors with a low operating voltage of ±3 V, high on/off ratio of 6.5  ×  10 5 , and a small subthreshold slope of about 100 mV dec −1 , which outperform reported flexible ferroelectric transistors, are demonstrated. The results make ferroelectric HZO a promising candidate for the next‐generation of wearable, low‐power, and nonvolatile memories with manufacturability and scalability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here