z-logo
open-access-imgOpen Access
Cavin1 Deficiency Causes Disorder of Hepatic Glycogen Metabolism and Neonatal Death by Impacting Fenestrations in Liver Sinusoidal Endothelial Cells
Author(s) -
Wei Zhuang,
Lei Jigang,
Shen Feng,
Dai Yuxiang,
Sun Yan,
Liu Yilian,
Dai Yan,
Jian Zhijie,
Wang Shilong,
Chen Zhengjun,
Liao Kan,
Hong Shangyu
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202000963
Subject(s) - endocrinology , biology , medicine , glycogen , rhoa , cofilin , microbiology and biotechnology , actin cytoskeleton , signal transduction , cytoskeleton , cell , biochemistry
It has been reported that Cavin1 deficiency causes lipodystrophy in both humans and mice by affecting lipid metabolism. The ablation of Cavin1 in rodents also causes a significant deviation from Mendelian ratio at weaning in a background‐dependent manner, suggesting the presence of undiscovered functions of Cavin1. In the current study, the results show that Cavin1 deficiency causes neonatal death in C57BL/6J mice by dampening the storage and mobilization of glycogen in the liver, which leads to lethal neonatal hypoglycemia. Further investigation by electron microscopy reveals that Cavin1 deficiency impairs the fenestration in liver sinusoidal endothelial cells (LSECs) and impacts the permeability of endothelial barrier in the liver. Mechanistically, Cavin1 deficiency inhibits the RhoA‐Rho‐associated protein kinase 2‐LIM domain kinase‐Cofilin signaling pathway and suppresses the dynamics of the cytoskeleton, and eventually causes the reduction of fenestrae in LSECs. In addition, the defect of fenestration in LSECs caused by Cavin1 deficiency can be rescued by treatment with the F‐actin depolymerization reagent latrunculin A. In summary, the current study reveals a novel function of Cavin1 on fenestrae formation in LSECs and liver glycogen metabolism, which provide an explanation for the neonatal death of Cavin1 null mice and a potential mechanism for metabolic disorders in patients with Cavin1 mutation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here