
Organic Microbial Electrochemical Transistor Monitoring Extracellular Electron Transfer
Author(s) -
Méhes Gábor,
Roy Arghyamalya,
Strakosas Xenofon,
Berggren Magnus,
Stavrinidou Eleni,
Simon Daniel T.
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202000641
Subject(s) - shewanella oneidensis , transistor , materials science , nanotechnology , electron transfer , shewanella , biosensor , microscale chemistry , electrochemistry , bioelectronics , optoelectronics , chemistry , electrode , bacteria , electrical engineering , voltage , photochemistry , genetics , mathematics education , mathematics , biology , engineering
Extracellular electron transfer (EET) denotes the process of microbial respiration with electron transfer to extracellular acceptors and has been exploited in a range of microbial electrochemical systems (MESs). To further understand EET and to optimize the performance of MESs, a better understanding of the dynamics at the microscale is needed. However, the real‐time monitoring of EET at high spatiotemporal resolution would require sophisticated signal amplification. To amplify local EET signals, a miniaturized bioelectronic device, the so‐called organic microbial electrochemical transistor (OMECT), is developed, which includes Shewanella oneidensis MR‐1 integrated onto organic electrochemical transistors comprising poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with poly(vinyl alcohol) (PVA). Bacteria are attached to the gate of the transistor by a chronoamperometric method and the successful attachment is confirmed by fluorescence microscopy. Monitoring EET with the OMECT configuration is achieved due to the inherent amplification of the transistor, revealing fast time‐responses to lactate. The limits of detection when using microfabricated gates as charge collectors are also investigated. The work is a first step toward understanding and monitoring EET in highly confined spaces via microfabricated organic electronic devices, and it can be of importance to study exoelectrogens in microenvironments, such as those of the human microbiome.