z-logo
open-access-imgOpen Access
Hybrid Ni@ZnO@ZnS‐Microalgae for Circular Economy: A Smart Route to the Efficient Integration of Solar Photocatalytic Water Decontamination and Bioethanol Production
Author(s) -
Serrà Albert,
Artal Raül,
GarcíaAmorós Jaume,
Sepúlveda Borja,
Gómez Elvira,
Nogués Josep,
Philippe Laetitia
Publication year - 2020
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201902447
Subject(s) - biofuel , photocatalysis , environmental remediation , groundwater remediation , human decontamination , materials science , solar fuel , pulp and paper industry , waste management , nanotechnology , chemistry , catalysis , ecology , organic chemistry , contamination , engineering , biology
Water remediation and development of carbon‐neutral fuels are a priority for the evermore industrialized society. The answer to these challenges should be simple, sustainable, and inexpensive. Thus, biomimetic‐inspired circular and holistic processes combing water remediation and biofuel production can be an appealing concept to deal with these global issues. A simple circular approach using helical Spirulina platensis microalgae as biotemplates to synthesize Ni@ZnO@ZnS photocatalysts for efficient solar water decontamination and bioethanol production during the recycling process is presented. Under solar irradiation, the Ni@ZnO@ZnS‐ Spirulina photocatalyst exhibits enhanced activity (mineralization efficiency >99%) with minimal photocorrosion and excellent reusability. At the end of its effective lifetime for water remediation, the microalgae skeleton (mainly glycogen and glucose) of the photocatalyst is recycled to directly produce bioethanol by simultaneous saccharification and fermentation process. An outstanding ethanol yield of 0.4 L kg −1 , which is similar to the highest yield obtained from oxygenic photosynthetic microorganisms, is obtained. Thus, the entire process allows effective solar photocatalytic water remediation and bioethanol production at room temperature using simple and easily scalable procedures that simultaneously fixes carbon dioxide, thereby constituting a zero‐carbon‐emission circular process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here