
Solar Energy Storage by Molecular Norbornadiene–Quadricyclane Photoswitches: Polymer Film Devices
Author(s) -
Petersen Anne Ugleholdt,
Hofmann Anna I.,
Fillols Méritxell,
Mansø Mads,
Jevric Martyn,
Wang Zhihang,
Sumby Christopher J.,
Müller Christian,
MothPoulsen Kasper
Publication year - 2019
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201900367
Subject(s) - norbornadiene , quadricyclane , energy storage , materials science , polymer , solar energy , nanotechnology , optoelectronics , chemical engineering , photochemistry , chemistry , organic chemistry , physics , composite material , ecology , power (physics) , quantum mechanics , engineering , biology , catalysis
Devices that can capture and convert sunlight into stored chemical energy are attractive candidates for future energy technologies. A general challenge is to combine efficient solar energy capture with high energy densities and energy storage time into a processable composite for device application. Here, norbornadiene (NBD)–quadricyclane (QC) molecular photoswitches are embedded into polymer matrices, with possible applications in energy storing coatings. The NBD–QC photoswitches that are capable of absorbing sunlight with estimated solar energy storage efficiencies of up to 3.8% combined with attractive energy storage densities of up to 0.48 MJ kg −1 . The combination of donor and acceptor units leads to an improved solar spectrum match with an onset of absorption of up to 529 nm and a lifetime ( t 1/2 ) of up to 10 months. The NBD–QC systems with properties matched to a daily energy storage cycle are further investigated in the solid state by embedding the molecules into a series of polymer matrices revealing that polystyrene is the preferred choice of matrix. These polymer devices, which can absorb sunlight and over a daily cycle release the energy as heat, are investigated for their cyclability, showing multicycle reusability with limited degradation that might allow them to be applied as window laminates.