
Ultranarrow Graphene Nanoribbons toward Oxygen Reduction and Evolution Reactions
Author(s) -
Zhang Jian,
Sun Yuanmiao,
Zhu Jiawei,
Gao Zhonghui,
Li Shuzhou,
Mu Shichun,
Huang Yunhui
Publication year - 2018
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201801375
Subject(s) - graphene nanoribbons , reduction (mathematics) , graphene , oxygen reduction reaction , oxygen evolution , materials science , oxygen , nanotechnology , chemistry , electrochemistry , electrode , organic chemistry , mathematics , geometry
Identification of catalytic sites for oxygen reduction and evolution reactions (ORR/OER) is critical to rationally develop highly efficient bifunctional carbon‐based metal‐free electrocatalyst. Here, a unique defect‐rich N‐doped ultranarrow graphene nanoribbon with a high aspect ratio that exhibits excellent ORR/OER bifunctional activities and impressive long‐term cycling stability in Zn–air batteries is successfully fabricated. Density functional theory calculations indicates that the topological defects (e.g., pentagons and heptagons) cooperated with pyridinic‐N dopants on the edges are more favorable to electrocatalytic activity toward ORR and OER. This work provides a new design principle for carbon‐based electrocatalytic nanomaterials.