
Tyrosine‐Rich Peptides as a Platform for Assembly and Material Synthesis
Author(s) -
Lee Jaehun,
Ju Misong,
Cho Ouk Hyun,
Kim Younghye,
Nam Ki Tae
Publication year - 2019
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201801255
Subject(s) - peptide , tyrosine , biomolecule , template , combinatorial chemistry , chemistry , structural motif , nanotechnology , materials science , biochemistry
The self‐assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure–property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic‐complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc‐peptide, and aromatic dipeptides, are widely studied. Recently, studies on material synthesis and the application of tyrosine‐rich short peptide‐based systems have demonstrated that tyrosine units serve as not only excellent assembly motifs but also multifunctional templates. Tyrosine has a phenolic functional group that contributes to π–π interactions for conformation control and efficient charge transport by proton‐coupled electron‐transfer reactions in natural systems. Here, the critical roles of the tyrosine motif with respect to its electrochemical, chemical, and structural properties are discussed and recent discoveries and advances made in tyrosine‐rich short peptide systems from self‐assembled structures to peptide/inorganic hybrid materials are highlighted. A brief account of the opportunities in design optimization and the applications of tyrosine peptide‐based biomimetic materials is included.