z-logo
open-access-imgOpen Access
Coercivity Modulation in Fe–Cu Pseudo‐Ordered Porous Thin Films Controlled by an Applied Voltage: A Sustainable, Energy‐Efficient Approach to Magnetoelectrically Driven Materials
Author(s) -
Dislaki Evangelia,
Robbennolt Shauna,
CampoyQuiles Mariano,
Nogués Josep,
Pellicer Eva,
Sort Jordi
Publication year - 2018
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201800499
Subject(s) - materials science , coercivity , porosity , electrolyte , voltage , electric field , composite material , polystyrene , voltage reduction , electrode , condensed matter physics , chemistry , physics , quantum mechanics , polymer
Fe–Cu films with pseudo‐ordered, hierarchical porosity are prepared by a simple, two‐step procedure that combines colloidal templating (using sub‐micrometer‐sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65%. The resulting magnetic properties can be controlled at room temperature using an applied electric field generated through an electric double layer in an anhydrous electrolyte. This material shows a remarkable 25% voltage‐driven coercivity reduction upon application of negative voltages, with excellent reversibility when a positive voltage is applied, and a short recovery time. The pronounced reduction of coercivity is mainly ascribed to electrostatic charge accumulation at the surface of the porous alloy, which occurs over a large fraction of the electrodeposited material due to its high surface‐area‐to‐volume ratio. The emergence of a hierarchical porosity is found to be crucial because it promotes the infiltration of the electrolyte into the structure of the film. The observed effects make this material a promising candidate to boost energy efficiency in magnetoelectrically actuated devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here