z-logo
open-access-imgOpen Access
Toward Bioelectronic Medicine—Neuromodulation of Small Peripheral Nerves Using Flexible Neural Clip
Author(s) -
Lee Sanghoon,
Peh Wendy Yen Xian,
Wang Jiahui,
Yang Fengyuan,
Ho John S.,
Thakor Nitish V.,
Yen ShihCheng,
Lee Chengkuo
Publication year - 2017
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201700149
Subject(s) - neuromodulation , flexibility (engineering) , neuroscience , peripheral , computer science , vagus nerve , bioelectronics , peripheral nervous system , biomedical engineering , medicine , stimulation , materials science , biology , central nervous system , nanotechnology , statistics , mathematics , operating system , biosensor
Abstract Neural modulation technology and the capability to affect organ function have spawned the new field of bioelectronic medicine. Therapeutic interventions depend on wireless bioelectronic neural interfaces that can conformally and easily attach to small (few hundred micrometers) nerves located deep in the body without neural damage. Besides size, factors like flexibility and compliance to attach and adapt to visceral nerves associated moving organs are of paramount importance and have not been previously addressed. This study proposes a novel flexible neural clip (FNC) that can be used to interface with a variety of different peripheral nerves. To illustrate the flexibility of the design, this study stimulates the pelvic nerve, the vagus nerve, and branches of the sciatic nerve and evaluates the feasibility of the design in modulating the function of each of these nerves. It is found that this FNC allows fine‐tuning of physiological processes such as micturition, heart rate, and muscle contractions. Furthermore, this study also tests the ability of wirelessly powered FNC to enable remote modulation of visceral pelvic nerves located deep in the body. These results show that the FNC can be used with a range of different nerves, providing one of the critical pieces in the field of bioelectronics medicines.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here