z-logo
open-access-imgOpen Access
Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO 2 Microfibers
Author(s) -
Wang Nü,
Gao Yuan,
Wang YunXiao,
Liu Kai,
Lai Weihong,
Hu Yemin,
Zhao Yong,
Chou ShuLei,
Jiang Lei
Publication year - 2016
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.201600013
Subject(s) - microfiber , nanoporous , materials science , electrospinning , nanoengineering , nanotechnology , fabrication , chemical engineering , electrochemistry , carbon fibers , porosity , electrode , composite material , chemistry , polymer , medicine , alternative medicine , pathology , composite number , engineering
Nanoengineering of electrode materials can directly facilitate sodium ion accessibility and transport, thus enhancing electrochemical performance in sodium ion batteries. Here, highly sodium‐accessible carbon coated nanoporous TiO 2 microfibers have been synthesised via the facile electrospinning technique which can deliver an enhanced capacity of ≈167 mAh g −1 after 450 cycles at current density of 50 mA g −1 and retain a capacity of ≈71 mAh g −1 at the high current rate of 1 A g −1 . With the benefits of their porous structure, thin TiO 2 inner walls, and the introduction of conductive carbon, the nanoporous TiO 2 /C microfibers exhibit high ion accessibility, fast Na ion transport, and fast electron transport, thereby leading to the excellent Na‐storage properties presented here. Nanostructuring is proven to be a fruitful strategy that can alleviate the reliance on materials' intrinsic nature; and the electrospinning technique is versatile and cost‐effective for the fabrication of such an effective nanoporous microfiber structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here