Premium
Wet‐Spinning and Carbonization of Lignin‐Polyvinyl Alcohol Precursor Fibers
Author(s) -
Föllmer Marie,
Jestin Simon,
Neri Wilfrid,
Vo Van Son,
Derré Alain,
Mercader Célia,
Poulin Philippe
Publication year - 2019
Publication title -
advanced sustainable systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.499
H-Index - 24
ISSN - 2366-7486
DOI - 10.1002/adsu.201900082
Subject(s) - carbonization , polyvinyl alcohol , lignin , materials science , spinning , polymer , fiber , chemical engineering , miscibility , cellulose , composite material , organic chemistry , chemistry , scanning electron microscope , engineering
Lignin is a promising bio‐based precursor for sustainable carbon fibers. Limiting factors for their development include the brittleness of lignin and the lack of large‐scale production routes. Here, a simple and economic wet‐spinning method, suitable for the fabrication of fibers based on softwood Kraft lignin (KL) and polyvinyl alcohol (PVA), is proposed. These two polymers reveal a partial miscibility in solution, and form metastable dispersions in solid state. KL‐PVA fibers are prepared at a weight ratio of 70:30 and are carbonized without thermo‐stabilization. A tailor‐made temperature program leads to a decreased microporosity on the fiber surfaces. The obtained carbon structures at 1000 °C are found to be poorly ordered, leading to only intermediate mechanical and electrical properties. However, graphitic domains appear at temperatures above 1500 °C and indicate a high potential for the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom