Premium
DNA for Assembly and Charge Transport Photocatalytic Reduction of CO 2
Author(s) -
Ma Ke,
Yehezkeli Omer,
He Liangcan,
Cha Jennifer N.
Publication year - 2018
Publication title -
advanced sustainable systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.499
H-Index - 24
ISSN - 2366-7486
DOI - 10.1002/adsu.201700156
Subject(s) - photocatalysis , materials science , electron transfer , acceptor , nanotechnology , dna , electron acceptor , electron transport chain , electron donor , electrochemistry , nanocrystal , photochemistry , chemical engineering , chemistry , catalysis , electrode , organic chemistry , physics , engineering , condensed matter physics , biochemistry
This report demonstrates the use of DNA to spatially organize photoactive nanocrystals into well‐defined Z‐scheme architectures to facilitate CO 2 reduction to usable fuels upon solar irradiation through electron transfer. Coupling donor (Titanium Oxide, TiO 2 ) and acceptor (Cadmium Sulfide, CdS) nanocrystals with DNA yield a 5.25‐fold improvement in CO 2 reduction over simply mixing the photocatalysts in solution. In addition, it is demonstrated that electron transfer occurs over distances far greater than those achieved with polyethylene glycol spacer. Efficient Z‐scheme photocatalytic reduction of CO 2 is observed for DNA lengths of 10–80 bases, which separate the donor and acceptor nanocrystals by 3–24 nm. More significantly, an interparticle distance of 9–10 nm yields the highest conversion of CO 2 , which is found for nanocrystals spaced using either linear 30mer double strand DNA (dsDNA) or a 40mer DNA composed of both linear and hairpin DNA. When the amount of 30mer DNA linking the photocatalysts is lowered, a corresponding decrease in CO 2 reduction yields is seen, showcasing the role of DNA in mediating electron transfer. These results demonstrate the highly unique attributes of DNA as both a templating agent for precise nanoscale assembly and for enabling charge transport. This work uncovers new research directions for nanoelectronics, electrochemistry, and photocatalysis.