z-logo
Premium
Hydroboration of Enynes and Mechanistic Insights
Author(s) -
Mao Lujia,
Bose Shubhankar Kumar
Publication year - 2020
Publication title -
advanced synthesis and catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.541
H-Index - 155
eISSN - 1615-4169
pISSN - 1615-4150
DOI - 10.1002/adsc.202000603
Subject(s) - hydroboration , chemistry , boranes , enantioselective synthesis , catalysis , transition metal , stereoselectivity , organic chemistry , organoboron compounds , combinatorial chemistry , rhodium , organic synthesis , boron
Organoboron compounds have found broad applications in the construction of novel C−C, C−O, and C−N bonds via transition metal‐catalyzed reactions. The hydroboration of C−C multiple bonds is one of the most important methodologies to introduce the boron atom into the organic skeleton. Traditionally, boranes were employed in the hydroboration of enynes under transition metal‐free conditions. When precious metal catalysts, such as palladium and rhodium were employed in the reactions, the scope of the hydroboration, as well as the regio‐ and stereoselectivity, was improved. The asymmetric hydroboration of enynes was also achieved via Pd‐catalyzed reactions. In recent years, the non‐precious 3d‐metal catalysts, such as iron, cobalt, nickel and copper were employed in the hydroboration of enynes, especially in the enantioselective reactions. In this review, we have looked into the hydroboration of enynes as well as their mechanisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here