Premium
An Efficient and Recyclable Catalyst for N‐Alkylation of Amines and β‐Alkylation of Secondary Alcohols with Primary Alcohols: SBA‐15 Supported N‐Heterocyclic Carbene Iridium Complex
Author(s) -
Wang Dong,
Guo XuQing,
Wang ChenXi,
Wang Yag,
Zhong Rui,
Zhu XiaoHan,
Cai LiHua,
Gao ZiWei,
Hou XiuFeng
Publication year - 2013
Publication title -
advanced synthesis and catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.541
H-Index - 155
eISSN - 1615-4169
pISSN - 1615-4150
DOI - 10.1002/adsc.201200732
Subject(s) - iridium , alkylation , chemistry , benzyl alcohol , catalysis , aniline , carbene , organic chemistry , mesoporous material
A mesoporous silica (SBA‐15)‐supported pyrimidine‐substituted N‐heterocyclic carbene iridium complex was prepared and used as a catalyst for both environmentally friendly N‐alkylation of amines and β‐alkylation of secondary alcohols with primary alcohols. The structure of the supported iridium catalyst was characterized by Fourier transform infrared (FT‐IR), 13 C and 29 Si solid‐state nuclear magnetic resonance (NMR), small‐angle X‐ray scattering (SAXS), transmission electron microscopy (TEM), iridium K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS) spectroscopic analyses which demonstrated that the coordination environment of the iridium centre and the 3‐dimensional‐hexagonal pore structure of SBA‐15 were retained after the immobilization. The catalyst was found to be highly efficient for both kinds of reaction on a wide range of substrates under mild conditions. Moreover, the supported iridium catalyst was obviously superior to the unsupported one in the N‐alkylation of aniline and β‐alkylation of 1‐phenylethanol with benzyl alcohol as substrate, which indicated that not only the iridium complex moiety but also the support material contributed to the catalytic activity of the supported iridium catalyst in these reactions. The supported iridium catalyst can be easily recycled by simple washing without chemical treatment, and exhibited excellent recycling performance without notable decrease in catalytic efficiency even after twelve test cycles for N‐alkylation of aniline with benzyl alcohol, nine cycles for N‐alkylation of different amines with different alcohols, and eight cycles for β‐alkylation of 1‐phenylethanol with benzyl alcohol, respectively.