Premium
Structural and Catalytic Characterization of Pichia stipitis OYE 2.6, a Useful Biocatalyst for Asymmetric Alkene Reductions
Author(s) -
Pompeu Yuri A.,
Sullivan Bradford,
Walton Adam Z.,
Stewart Jon D.
Publication year - 2012
Publication title -
advanced synthesis and catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.541
H-Index - 155
eISSN - 1615-4169
pISSN - 1615-4150
DOI - 10.1002/adsc.201200213
Subject(s) - chemistry , pichia stipitis , stereochemistry , saturated mutagenesis , cofactor , alkene , oxidoreductase , flavin mononucleotide , active site , catalysis , biochemistry , enzyme , mutant , yeast , saccharomyces cerevisiae , gene
We have probed Pichia stipitis CBS 6054 Old Yellow Enzyme 2.6 (OYE 2.6) by several strategies including X‐ray crystallography, ligand binding and catalytic assays using the wild‐type as well as libraries of site‐saturation mutants. The alkene reductase crystallized in space group P 6 3 2 2 with unit cell dimensions of 127.1×123.4 Å and its structure was solved to 1.5 Å resolution by molecular replacement. The protein environment surrounding the flavin mononucleotide (FMN) cofactor was very similar to those of other OYE superfamily members; however, differences in the putative substrate binding site were also observed. Substrate analog complexes were analyzed by both UV‐Vis titration and X‐ray crystallography to provide information on possible substrate binding interactions. In addition, four active site residues were targeted for site saturation mutagenesis (Thr 35, Ile 113, His 188, His 191) and each library was tested against three representative Baylis–Hillman adducts. Thr 35 could be replaced by Ser with no change in activity; other amino acids (Ala, Cys, Leu, Met, Gln and Val) resulted in diminished catalytic efficiency. The Ile 113 replacement library yielded a range of catalytic activities, but had very little impact on stereoselectivity. Finally, the two His residues (188 and 191) were essentially intolerant of substitutions with the exception of the His 191 Asn mutant, which did show significant catalytic ability. Structural comparisons between OYE 2.6 and Saccharomyces pastorianus OYE1 suggest that the key interactions between the substrate hydroxymethyl groups and the side‐chain of Thr 35 and/or Tyr 78 play an important role in making OYE 2.6 an ( S )‐selective alkene reductase.