Premium
Enzymatic Synthesis of α‐Glucosides of Resveratrol with Surfactant Activity
Author(s) -
Torres Pamela,
Poveda Ana,
JimenezBarbero Jesus,
Parra Jose Luis,
Comelles Francesc,
Ballesteros Antonio O.,
Plou Francisco J.
Publication year - 2011
Publication title -
advanced synthesis and catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.541
H-Index - 155
eISSN - 1615-4169
pISSN - 1615-4150
DOI - 10.1002/adsc.201000968
Subject(s) - chemistry , organic chemistry , yield (engineering) , hydrolysis , critical micelle concentration , resveratrol , bioavailability , pulmonary surfactant , lipophilicity , solubility , enzyme , moiety , micelle , stereochemistry , aqueous solution , biochemistry , bioinformatics , materials science , metallurgy , biology
Abstract We report the synthesis of a series of α‐glucosyl derivatives of resveratrol (3,5,4′‐trihydroxystilbene) by a transglycosylation reaction catalyzed by the enzyme cyclodextrin glucanotransferase (CGTase) using starch as glucosyl donor. Several reaction parameters (temperature, solvent composition, enzyme concentration and starch/resveratrol ratio) were optimized. The yield of α‐glucosylated products reached 50% in 24 h. The structures of the derivatives were determined by a combination of amyloglucosidase‐hydrolysis tests, MS and 2D‐NMR. Three families of products were obtained: glucosylated at 3‐OH, at 4′‐OH and at both 3‐OH and 4′‐OH. The bonds between glucoses were basically α(1→4). Interestingly, the water solubilities of the α‐glucosylated derivatives were at least 65‐ and 5‐fold higher than those of resveratrol and the natural β‐glucosylated derivative (piceid), respectively. In contrast with piceid, the synthesized α‐glucosylated compounds exhibited surfactant activity, with critical micelle concentration (CMC) values in the range 0.5–3.6 mM. Although the incorporation of a glucosyl moiety caused a loss of antioxidant activity (more pronounced in the position 3‐OH compared with 4′‐OH), the fact that the glycosides need to be converted into the aglycones before they are absorbed minimizes such an effect. In contrast, the modification of physicochemical properties such as solubility and partition coefficient by glycosylation could exert a positive influence on the bioavailability of resveratrol.