z-logo
Premium
Reversible Photochemical Switching via Plasmonically Enhanced Upconversion Photoluminescence
Author(s) -
Kim Byunghoon,
Lee KyuTae,
Cho Junhee,
Darshanoju Narasimha Achary,
Jung Kinam,
Ahn InHwan,
Shin JaeMin,
Oh Hyeongyeol,
Ki Yeongcheol,
Lee Hohjai,
Kwon Seok Joon,
Kim In Soo,
Cai Wenshan,
Ahn KwangHyun,
Ko DooHyun
Publication year - 2021
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.202100776
Subject(s) - photoisomerization , materials science , photochromism , photoluminescence , photon upconversion , photochemistry , green light , visible spectrum , optoelectronics , infrared , optics , nanotechnology , luminescence , isomerization , chemistry , blue light , physics , biochemistry , catalysis
Abstract Photochromic molecule‐incorporated optical devices offer desirable properties for photocontrollable optical systems, including advanced optical data storage and super‐resolution imaging. However, these molecules require multiple illumination sources, such as UV and visible light, for reversible photochemical reactions, which restricts their potential for advanced application. This study reports an effective strategy for modulating photoisomerization via a single near‐infrared light source assisted by plasmonically enhanced photoswitchable upconversion photoluminescence (UCPL). The proposed quasi‐periodic metal nanostructures to facilitate the resonance modes in the broadband region enable the substitution of the detrimental high‐energy light source (i.e., UV light) with near‐infrared stimuli, which is associated with UCPL enhancement of over two orders with spectrum orthogonality. To validate this concept, the accelerated reversible‐photoisomerization kinetics is experimentally confirmed by three‐ and tenfold amplification of the PL intensities of the photochromic disulfonyldiarylethene derivatives. Further validation of the proposed strategy is performed using photodynamic imaging, which reveals accelerated photoisomerization, high photocyclization stability, and high spatial resolution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here