z-logo
Premium
Anisotropic Resistivity Surfaces Produced in ITO Films by Laser‐Induced Nanoscale Self‐organization
Author(s) -
LopezSantos Carmen,
Puerto Daniel,
Siegel Jan,
MaciasMontero Manuel,
Florian Camilo,
GilRostra Jorge,
LópezFlores Víctor,
Borras Ana,
GonzálezElipe Agustín R.,
Solis Javier
Publication year - 2021
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.202001086
Subject(s) - materials science , electrical resistivity and conductivity , anisotropy , fluence , laser ablation , nanoscopic scale , indium tin oxide , laser , electrical conductor , transverse plane , conductivity , irradiation , composite material , optics , nanotechnology , layer (electronics) , chemistry , physics , structural engineering , nuclear physics , electrical engineering , engineering
Highly anisotropic resistivity surfaces are produced in indium tin oxide (ITO) films by nanoscale self‐organization upon irradiation with a fs‐laser beam operating at 1030 nm. Anisotropy is caused by the formation of laser‐induced periodic surface structures (LIPSS) extended over cm‐sized regions. Two types of optimized structures are observed. At high fluence, nearly complete ablation at the valleys of the LIPSS and strong ablation at their ridges lead to an insulating structure in the direction transverse to the LIPSS and conductive in the longitudinal one. A strong diminution of In content in the remaining material is then observed, leading to a longitudinal resistivity ρ L  ≈ 1.0 Ω·cm. At a lower fluence, the material at the LIPSS ridges remains essentially unmodified while partial ablation is observed at the valleys. The structures show a longitudinal conductivity two times higher than the transverse one, and a resistivity similar to that of the pristine ITO film (ρ ≈ 5 × 10 −4  Ω·cm). A thorough characterization of these transparent structures is presented and discussed. The compositional changes induced as laser pulses accumulate, condition the LIPSS evolution and thus the result of the structuring process. Strategies to further improve the achieved anisotropic resistivity results are also provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here