z-logo
Premium
High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response
Author(s) -
Matricardi Cristiano,
GarciaPomar Juan Luis,
Molet Pau,
Pérez Luis Alberto,
Alonso Maria Isabel,
CampoyQuiles Mariano,
Mihi Agustín
Publication year - 2020
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.202000786
Subject(s) - nanolithography , materials science , plasmon , magnetism , photonics , lithography , metamaterial , polarization (electrochemistry) , nanotechnology , optoelectronics , chirality (physics) , photonic crystal , nanoscopic scale , nanophotonics , photoluminescence , circular polarization , photonic metamaterial , optics , fabrication , physics , symmetry breaking , chemistry , pathology , nambu–jona lasinio model , microstrip , medicine , alternative medicine , chiral symmetry breaking , quantum mechanics
Metal nanostructures offer exciting ways to manage light at the nanoscale exploited in fields such as imaging, sensing, energy conversion, and information processing. The optical response of the metallic architectures can be engineered to exhibit photonic properties that span from plasmon resonances to more complex phenomena such as negative refractive index, optical chirality, artificial magnetism, and more. However, the latter optical properties are only observed in intricate architectures, which are highly demanding in terms of nanofabrication and hence less scalable and far away from device implementation. Here, a series of metasurfaces covering centimeter areas and operating in the visible spectrum are presented, which are produced from the combination of nanoimprinting lithography and oblique angle metal evaporation. The potential of this scalable approach is illustrated by easily fabricating metasurfaces engineered to exhibit artificial optical magnetism, tunable linear polarization dependent response, chirality with g ‐factor of 0.2, and photoluminescence enhancement of 20 times over a 9 mm 2 area.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here