Premium
A Self‐Powered High‐Performance UV Photodetector Based on Core–Shell GaN/MoO 3– x Nanorod Array Heterojunction
Author(s) -
Zheng Yulin,
Li Yuan,
Tang Xin,
Wang Wenliang,
Li Guoqiang
Publication year - 2020
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.202000197
Subject(s) - responsivity , photodetector , materials science , heterojunction , nanorod , optoelectronics , specific detectivity , photoconductivity , optics , nanotechnology , physics
Self‐powered UV photodetectors are highly desirable for applications in space communications and environmental monitoring. However, most self‐powered UV photodetectors exhibit unimpressive performance in weak signal detection. Herein, a self‐powered UV photodetector based on the core–shell GaN/MoO 3– x nanorod array (NRA) heterojunction system is demonstrated. Homogeneous MoO 3– x layers are deposited on GaN NRAs by a simple one‐step physical vapor deposition method. The photodetector device shows an ultrahigh specific detectivity of 2.7 × 10 15 Jones at 355 nm without any power supply. Further analyses reveal a responsivity of 160 A W −1 and a high UV–vis rejection ratio ( R 355 nm / R 400 nm ) of 2.0 × 10 4 under zero bias. The self‐powered device also has a fast response speed with a rise/fall time of 73/90 µs. As a result, the self‐powered photodetector, featuring ultrahigh detectivity and responsivity along with fast response, exhibits great potential for applications in next‐generation UV detection. The core–shell NRA structure heterojunction design provides a valuable direction for realizing nanoscale self‐powered UV photodetectors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom