Premium
Boosted UV Photodetection Performance in Chemically Etched Amorphous Ga 2 O 3 Thin‐Film Transistors
Author(s) -
Han Zuyin,
Liang Huili,
Huo Wenxing,
Zhu Xiaoshan,
Du Xiaolong,
Mei Zengxia
Publication year - 2020
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.201901833
Subject(s) - photodetection , materials science , responsivity , optoelectronics , photodiode , thin film transistor , photoconductivity , specific detectivity , photodetector , transistor , fabrication , amorphous solid , dark current , photosensitivity , nanotechnology , electrical engineering , medicine , alternative medicine , engineering , organic chemistry , pathology , chemistry , layer (electronics) , voltage
A three‐terminal thin‐film transistor (TFT) architecture is essential for photodetectors to reach a good balance between high responsivity and fast response speed. Bottom‐gate amorphous Ga 2 O 3 (a‐Ga 2 O 3 ) TFTs are fabricated to boost their UV photodetection properties. During the device fabrication process, a simple chemical‐etching solution with the advantages of easy operation, low cost, and compatibility with traditional lithography process, is developed to selectively etch a‐Ga 2 O 3 films. The a‐Ga 2 O 3 channel etched device on Si manifests an effective suppression of the commonly observed gate leakage current. Meanwhile, a patterned a‐Ga 2 O 3 TFT on quartz shows an excellent n‐type TFT performance with an on/off ratio as high as ≈10 7 . It is further applied as a phototransistor, to diminish the persistent photoconductivity (PPC) effect while keeping a high responsivity ( R ) as well. Under the 254 nm UV illumination, the a‐Ga 2 O 3 phototransistor demonstrates a high light‐to‐dark ratio of 5 × 10 7 , a high responsivity of 5.67 × 10 3 A W −1 , and a high detectivity of 1.87 × 10 15 Jones. Remarkably, the PPC phenomenon in a‐Ga 2 O 3 UV phototransistors is effectively suppressed by applying a positive gate pulse, which greatly shortens the decay time to 5 ms and offers a‐Ga 2 O 3 possible inroads into imaging applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom