z-logo
Premium
Terahertz Reflectarray with Enhanced Bandwidth
Author(s) -
You Xiaolong,
Ako Rajour T.,
Lee Wendy S. L.,
Low Mei Xian,
Bhaskaran Madhu,
Sriram Sharath,
Fumeaux Christophe,
Withayachumnankul Withawat
Publication year - 2019
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.201900791
Subject(s) - bandwidth (computing) , resonator , terahertz radiation , beamforming , materials science , transverse plane , wideband , optics , center frequency , optoelectronics , polarization (electrochemistry) , physics , telecommunications , computer science , engineering , band pass filter , chemistry , structural engineering
Reflectarrays offer unique potential for beamforming at terahertz frequencies as they combine the advantages of low‐profile of phased arrays and high‐efficiency of parabolic antennas. However, one challenge associated with reflectarrays is their bandwidth limitation resulting from the nonlinear phase response. To enhance bandwidth, a single‐layer stub‐loaded resonator is proposed for constructing reflectarrays. This resonator design shows a smooth and near‐linear phase response with a complete 360° phase coverage at and around the design frequency. To demonstrate its capability in realizing beamforming, a focusing reflectarray is then constructed using the proposed resonator as a building block. The measured results reveal that the 3 dB relative bandwidths of the reflectarray for the transverse electric (TE)‐ and transverse magnetic (TM)‐polarized excitations are 23.3% and 23.9%, respectively, while retaining an efficiency of 71.9% for the TE polarization and 71.0% for the TM polarization at the center frequency of 1.00 THz. The simulation bandwidth of this proposed focusing reflectarray is over twice that of an existing dielectric resonator reflectarray. The proposed resonator has a potential to enhance the bandwidth of terahertz reflectarrays for various beamforming functions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here