Premium
Electrical Control of Electromagnetically Induced Transparency by Terahertz Metamaterial Funneling
Author(s) -
Jung Hyunseung,
Jo Hyunwoo,
Lee Wonwoo,
Kim Beom,
Choi Hyunyong,
Kang Moon Sung,
Lee Hojin
Publication year - 2019
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.201801205
Subject(s) - metamaterial , electromagnetically induced transparency , terahertz radiation , materials science , optoelectronics , group delay and phase delay , slow light , optics , physics , photonic crystal , telecommunications , computer science , bandwidth (computing)
Electromagnetically induced transparency (EIT) analogs using metamaterials have diverse applications, including nonlinear optics, telecommunications, and biochemical sensors. These EIT analogs can be actively controlled by embedding semiconducting materials into metamaterial structures, but most active EIT metamaterials require complex optical setups and complicated fabrication processes. Graphene‐based EIT metamaterials are some of the most promising active EIT systems because of their simple controllability by electrical bias, but related researches have so far been limited to theoretical or numerical studies. Here, experimentally verified graphene EIT metamaterials are provided by controlling the terahertz funneling of the unique metaatom structures. The proposed active EIT metamaterials are fabricated on flexible and ultrathin polyimide films to acquire the lowest substrate insertion losses and achieve a 1 ps group delay change at the transmission peak of the EIT analog. Moreover, because the proposed metamaterials exhibit resonance properties that vary depending on the polarization direction, the phase delay can be controlled up to 80° from the proposed metamaterials by rotating the incident polarization to the orthogonal direction. Overall, by controlling the group and phase delay of incident waves in a single metamaterial device simultaneously, a multifunctional active tuning system can be realized in the terahertz range.