z-logo
Premium
Generating Focused 3D Perfect Vortex Beams By Plasmonic Metasurfaces
Author(s) -
Zhang Yuchao,
Liu Weiwei,
Gao Jie,
Yang Xiaodong
Publication year - 2018
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.201701228
Subject(s) - axicon , optics , plasmon , photonics , beam (structure) , materials science , optoelectronics , phase (matter) , physics , laser , laser beams , quantum mechanics
Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here