z-logo
Premium
Selective Plasmonic Platforms Based on Nanopillars to Enhance Vibrational Sum‐Frequency Generation Spectroscopy
Author(s) -
Lis Dan,
Caudano Yves,
Henry Marie,
DemoustierChampagne Sophie,
Ferain Etienne,
Cecchet Francesca
Publication year - 2013
Publication title -
advanced optical materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 91
ISSN - 2195-1071
DOI - 10.1002/adom.201200034
Subject(s) - nanopillar , materials science , plasmon , surface plasmon resonance , surface plasmon , spectroscopy , excited state , optics , optoelectronics , nanotechnology , nanostructure , nanoparticle , atomic physics , physics , quantum mechanics
The enhancement of the vibrational sum‐frequency generation (SFG) signal from molecules adsorbed on metallic nanopillars excited at a resonance frequency matching their localized surface plasmons is reported. The nanopillars stand vertically on a metal surface and possess two plasmon modes that can be selectively excited by either the incident visible laser beam, or the generated SFG beam itself. This nanostructured platform increases the molecular SFG signal of a monolayer by two orders of magnitude. The localization and the geometry of the two plasmon modes enables to probe the molecules adsorbed onto the vertical nanopillar wall, or on the top of it, or on the flat surface between the pillars, selectively. In practice, this spatial selectivity is set by switching the polarization of the visible and SFG beams at resonance. Owing to the largely improved sensitivity combined with a specific spatial selectivity, plasmon‐enhanced SFG boosts the versatility of second‐order vibrational SFG spectroscopy or microscopy. This makes them promising platforms in the development of analytical molecular devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here