Premium
Hexahedral LED Arrays with Row and Column Control Lines Formed by Selective Liquid‐Phase Plasticization and Nondisruptive Tucking‐Based Origami
Author(s) -
Kim GiGwan,
Kim Yeongmin,
Yoo Seonggwang,
Jang Hun Soo,
Ko Heung Cho
Publication year - 2020
Publication title -
advanced materials technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.184
H-Index - 42
ISSN - 2365-709X
DOI - 10.1002/admt.202000010
Subject(s) - materials science , microfluidics , nanotechnology , polydimethylsiloxane
Origami/kirigami of flexible electronics is a promising way to produce 3D electronics because well‐developed silicon‐based technologies can be used for the planar circuitry layout. However, it is still a challenge to enable general row and column control lines to develop 3D addressable sensory and display systems. This study addresses this issue via selective plasticization of an acrylonitrile butadiene styrene (ABS) film with N , N ‐dimethylformamide (DMF) through polydimethylsiloxane (PDMS) microfluidic channels. The use of DMF provides plasticization in a controllable manner because of the fast absorption of the DMF in the liquid phase during the plasticization process, a prolonged retention time of DMF in the ABS film at room temperature during the transformation process, and fast desorption at 60– 80 °C for the deplasticization process. The use of microfluidic channels allows high‐resolution selective plasticization to enable extreme cases of local bending or even folding inward and outward, thereby enabling tucking‐based origami with no crack generation. The lamination of membrane‐type electronic devices to an ABS film followed by selective plasticization and transformation enables nondisruptive tucking‐based origami at the electronics level, such as for the demonstration of a hexahedral light‐emitting diode (LED) array with general row and column control lines.